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Abstract. The existence of an exponential representation for the fundamental solutions of a linear
differential system is approached from a novel point of view. A sufficient condition is obtained
in terms of the norm of the coefficient operator defining the system. The condition turns out to
coincide with a previously published one concerning convergence of the Magnus series expansion.
Direct analysis of the general evolution equations in theSU(N) Lie group illustrates how the
estimate for the domain of existence/convergence becomes larger. Eventually, an application is
done for the Baker–Campbell–Hausdorff series.

1. Introduction

The so-called Magnus expansion (ME) is an elegant way to approximately solve the linear
operator initial value problem:

dZ

dt
= A(t)Z Z(0) = I. (1)

For our purposes it suffices to considerA as a complex matrix of dimensionn × n whose
matrix elements are integrable functions oft , but the analysis given in this paper applies more
generally to bounded operators in a Banach algebra. HereI stands for the identity matrix of
dimensionn. If we recall that a possible form to write the solution corresponding to a constant
operatorA readsZ (t) = exp(At), one may wonder about the advantages of seeking a solution
of equation (1) in the exponential formZ (t) = exp(�(t)), �(0) = 0. The ME provides one
such possibility by taking� as the expansion

�(t) =
∞∑
k=1

�k(t) (2)

where the terms are expressed as nested commutators. For the sake of illustration the first two
contributions read

�1(t) =
∫ t

0
A(τ) dτ �2(t) = 1

2

∫ t

0
[A(τ),�1(τ )] dτ. (3)

The relevant point for the usefulness of such an exponential representation is that any
truncation of (2) leads to an approximate solution ofZ(t) which necessarily preserves some
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intrinsic property of the exact solution. For instance, it is well known that det(Z(t)) =
exp(

∫ t
0 tr(A(τ)) dτ , which is indeed a property shared by a truncated ME. In many problems

we are interested in solutions of equation (1) which evolve int on a Lie groupG. As we
build� with all the terms in the series (2) belonging to the Lie algebrag associated toG, any
approximation toZ obtained by truncating (2) is still an element ofG, providedA ∈ g. This
feature of ME has been exploited in a number of areas of physics where equation (1) controls
the time evolution of a system either in a classical or quantum treatment. A representative
list of applications can be found in [1]. For instance, whenA is skew-Hermitian, which
may correspond to the Schrödinger equation in quantum mechanics, then every exponential
approximation toZ is certainly unitary as required by first principles. More recently, ME
has been proposed [2] as a qualitatively correct and quantitatively very accurate source of
numerical integrators of linear differential systems on Lie groups.

Whereas the use of ME has spread among various branches of science, there are still
some fundamental problems open which have not been faced up in the same measure. The
purpose of this paper is to shed light on these matters. Actually, we can distinguish two
intertwined questions in the Magnus approach for solving the initial value problem (1). First,
for what values oft and for what operatorsA does equation (1) admit a true exponential
solution (the existence problem). Second, for what values oft and for what linear operators,
A, does the series in equation (2) converge (the convergence problem). More precisely, we
obtain conditions onA(t) defining at-domain where the exponential representation ofZ(t)

is guaranteed; i.e., we address our study to the first item above. In section 2 we develop a
short proof to determine such a condition. Section 3 addresses the second item above. In it,
we slightly generalize the recursive proof of convergence of ME in [1]. It turns out that the
existence and convergence conditions obtained coincide (up to numerical precision). In view
of this striking result, one could be tempted to attribute further significance to thet-domains
obtained. For this reason in section 4 we analyse in detail the ME for equation (1) in the
particular case of thesu(N) Lie algebra. Eventually, in section 5 an application of this result is
given to estimate a sufficient condition for convergence of the well known Baker–Campbell–
Hausdorff (BCH) series.

2. Existence ofΩ

Introducing the formZ (t) = exp(�(t)) into equation (1) one obtains the nonlinear differential
equation for� (see for instance [3–5])

�̇ = ad�
exp(ad�)− 1

A =
∞∑
j=0

Bj

j !
adj� A �(0) = 0. (4)

Here the dot stands for derivative with respect tot , Bj are Bernoulli numbers [6], and we
introduce the adjoint operator: ad0

� A = A, ad�(A) = [�,A] ≡ �A − A�, adj� A =
ad�(adj−1

� A).
Magnus himself [3] gathers in his original paper the following formal result. The

exponential representation exists for a sufficiently small interval oft . For whenever a couple
of eigenvalues of�, sayλk(t), λj (t), satisfy theMagnus conditionλk(t)− λj (t) = 2π i, then
�̇(t) becomes singular in equation (4) becauseλk(t) − λj (t) are precisely the instantaneous
eigenvalues of ad�. Alas, that existence theorem has little practical application. But indeed it is
the regularity of the exponential map from the Lie algebra to the Lie group that determines the
global properties of the Magnus expansion. Dixmier [7] studied the problem globally and gave
conditions for the surjectivity of the map. Dixmier’s results were completed to some extent by
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the work of Saito [8]: The exponential map of a complex Lie algebra is globally one to one if
and only if the algebra is nilpotent, i.e. there exists a finiten such that adx1 adx2 . . .adxn−1 xn = 0,
wherexj are arbitrary elements from the Lie algebra. For solvable real algebras the mapping is
surjective if and only if the algebra contains no subalgebra isomorphic to the algebra spanned
by the elementsx, y, z with the commutator rule [x, y] = z, [x, z] = −y. As a matter of fact,
this guarantees that the eigenvalues of ad� are always real, and hence the Magnus condition on
eigenvalues is never satisfied. This paper is intended to extract information about the existence
of � directly fromA.

Equation (4) admits the integral form

�(t) =
∞∑
j=0

Bj

j !

∫ t

0
adj�(s) A(s) ds (5)

provided� is sufficiently small, or is e.g., nilpotent. We are interested in finding for which
values oft the exponential representation ofZ(t) does exist. It is clear in the nilpotent case
that the Magnus expansion will give a global representation, hence we will in the following
consider only the non-nilpotent case. Now, assume that the Lie algebra generated byA(t) is
endowed with a norm,‖ · ‖. With this in mind, the basic commutator will be bounded as

‖[�,A]‖ 6 2µ‖�‖‖A‖ (6)

which implies for the nested commutator

‖ adn� A‖ 6 (2µ)n‖�‖n‖A‖ (7)

whereµ ∈ [0, 1] is introduced as a real factor incorporating any additional knowledge we may
have onA useful to tighten the bound. If no further information is added thenµ = 1. The
norm appearing in the expressions above is as yet unspecified but has to satisfy theconsistency
conditionor submultiplicative property‖AB‖ 6 ‖A‖‖B‖, so that‖[A,B]‖ 6 2‖A‖‖B‖ be
implied.

Using the triangle inequality repeatedly we can obtain from equation (5)

‖�(t)‖ 6
∫ t

0

∞∑
j=0

|Bj |
j !
(2µ‖�(s)‖)j‖A(s)‖ ds. (8)

The series inside the integral sign can be summed up using

g(x) ≡
∞∑
j=0

|Bj |
j !
(2x)j = 2 +x(1− cot(x)) (9)

which is a positive nondecreasing function in the domainD ≡ [0, π).
Thus, if we denote‖A(s)‖ ≡ k(s) we arrive at

‖�(t)‖ 6
∫ t

0
g(µ‖�(s)‖)k(s) ds ≡ f (t). (10)

From here it is obvious thaṫf (t) = g(µ‖�(t)‖)k(t), and sinceg is nondecreasing in
D, ḟ (t) 6 g(µf (t))k(t). Now the positive character ofg in D allows us to write
ḟ (t)/g(µf (t)) 6 k(t), and by integration

1

µ

∫ µf (t)

0

dx

g(x)
6
∫ t

0
k(s) ds (11)

providedµf (t) 6 π . This is indeed the case ift is such that

K(t) ≡
∫ t

0
k(s)ds 6 1

µ

∫ π

0

dx

g(x)
(12)
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due again to the fact thatg > 0 and consequently
∫ y

0 dz/g(z) is a strictly increasing function of
y. The valueξ of the integral appearing in the above equation can be determined numerically
and the final result reads∫ t

0
‖A(s)‖ ds 6 ξ/µ = 1.086 869/µ. (13)

For those values oft satisfying inequality (13) the existence of� is then ensured. This statement
may depend of the norm chosen. As far as we are dealing with a sufficiency condition for
existence of� it is enough to find a particular norm satisfying (13).

3. Convergence of the Magnus expansion

Some lower bounds to the radius of convergence of the ME, i.e. equation (2), in terms ofA,
can be found in the literature [2, 9]. Here we shall be concerned with the result given in [1].
For the sake of completeness we shall sketch and slightly generalize (in order to incorporate
the parameterµ above) the induction proof in [1].

Substituting the Magnus series (2) into (4) and gathering terms of the same order the
following recursive procedure holds [4]:

�1 =
∫ t

0
A(τ) dτ �n =

n−1∑
j=1

Bj

j !

∫ t

0
S(j)n (τ ) dτ n > 2

S(j)n =
n−j∑
m=1

[�m, S
(j−1)
n−m ] 2 6 j 6 n− 1

S(1)n = [�n−1, A] S(n−1)
n = adn−1

�1
A.

(14)

Following [1] it is possible to show by induction that (notice the presence of the factorµ)

‖S(j)n (t)‖ 6 (µK(t))n−1k(t)f (j)n (15)

provided the coefficientsf (j)n are obtained from

f (j)n = 2
n−j∑
m=1

m−1∑
p=0

|Bp|
p!m

f (p)m f
(j−1)
n−m (16)

with f (0)1 = 1, f (0)n = 0, for n > 1. Thus, the norm of the terms in the Magnus series is
bounded as

‖�n(t)‖ 6
[

1

n

n−1∑
p=1

|Bp|
p!

f (p)n

]
(µK(t))n. (17)

The series
∑∞

k=1 ‖�k(t)‖ is then bounded by a power series inµK(t) and a numerical
application of the D’Alembert criterion of convergence directly leads (up to numerical
precision) to equation (13). The fact that both schemes of bounding refer to existence and
convergence, respectively, poses the question about a possible especial meaning of (13): does
equation (13) provide us with the best possible lower bound for the existence/convergence
radius of ME, in absence of any other additional information?

4. Existence of the Magnus operator insu(N )

Let us supposeA ∈ su(N), the set of skew-Hermitian traceless matrices, so that the
fundamental matrixZ belongs to the Lie group of unitary matrices,SU(N). This is a familiar
case in the study of spin dynamics in quantum mechanics. We shall present the caseN = 2 in
detail first, and then the generalsu(N) case.
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4.1. The su(2) case

The skew-Hermitian traceless matricesA and� may be expressed in terms of the Pauli
matrices: Eσ = {σx, σy, σz}, which satisfy [σx, σy ] = 2iσz, and circular permutations.
Thus, we write� = −i Eχ · Eσ andA = −iEa · Eσ , with Eχ(t) and Ea(t) real vector valued
functions. For two generic matricesA,B ∈ su(2) we have then [A,B] = 2i(Ea ∧ Eb) · Eσ ,
in terms of the vector product. Using the trace norm,‖A‖ =

√
tr(AA†) = a

√
2, where

a = ‖Ea‖, we get ‖[A,B]‖ = 2
√

2(a2b2 − Ea · Eb) = 2
√

2ab| sinθ | 6 2
√

2ab, where

0 6 θ 6 π stands for the angle betweenEa and Eb. If we compare with the more naive
bound ‖[A,B]‖ 6 2‖A‖‖B‖ = 4ab we conclude that forsu(2) we can at least take
µ = 1/

√
2, and this leads toK(t) 6

√
2ξ = 1.537 064 in equation (13), which enlarges

the existence/convergence domain. It may still be pertinent to ask about the accuracy of the
lower bound extracted in this manner.

Despite the complete solution for� is not known, we shall see that some interesting
information arises by taking into account that ad� is itself a linear operator. Therefore
equation (4) does have a matrix representation, which in the case at hand is of dimension
three (the dimension of the Lie algebra).

The relevant nested commutators in equation (4) are now given by

adn� A = −(−1)nχn(χ̂ ∧ Ea) · Eσ (n > 0) (18)

where χ̂ ≡ Eχ/χ . After some straightforward algebra we obtain the nonlinear system of
differential equations

dEχ
dt
= Ea + Eχ ∧ Ea + (1− χ cotχ)[χ̂ ∧ (χ̂ ∧ Ea)]. (19)

The derivative ofEχ becomes singular unlessχ(t) < π . It corresponds to the Magnus condition
for the existence of an exponential representation since the eigenvalues of�(t) are±iχ(t). As
it stands this result has no practical application. However, this equation still provides us with a
new lower bound for the radius of convergence. Equation (19) and the identity ˙χ = χ̂ · dEχ/dt
yield χ̇ = Ea · χ̂ . Consequently,

χ(t) =
∫ t

0
Ea(τ) · χ̂(τ ) dτ 6

∫ t

0
a(τ) dτ. (20)

We then conclude that forsu(2) the existence of� is ensured if∫ t

0
a(τ) dτ < π. (21)

Instead, the bound (13) tosu(2) provides us with the existence/convergence domain:∫ t

0
a(τ) dτ 6 ξ

√
2= 1.537 064 (22)

with µ = 1/
√

2. These results have to be compared with the crudest estimate obtained with
µ = 1, which is∫ t

0
a(τ) dτ 6 ξ = 1.086 869. (23)

4.2. The su(N) case

Suppose the general caseA ∈ su(N). Thus,�† = −� and�̇† = −�̇. We use the Frobenius
norm ‖�‖2 = tr(�†�), which is derived from the scalar product〈A|B〉 = tr(A†B). By
differentiating

2‖�‖ d

dt
‖�‖ = 〈�̇|�〉 + 〈�|�̇〉 (24)
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and using equation (4) we get‖�‖ d
dt ‖�‖ = tr(�†A). By Cauchy–Swartz inequality, we have

‖�‖ d
dt ‖�‖ 6 ‖A‖‖�‖, and by integrating

‖�(t)‖ 6
∫ t

0
‖A(x)‖ dx. (25)

Since� is diagonalizable we have, for the Frobenius norm, the bound maxk |λk| 6 ‖�‖ in
terms of the eigenvaluesλk (k = 1 . . . N). Hence if∫ t

0
‖A(x)‖ dx < π (26)

we are guaranteed that the eigenvalues of� satisfy maxk,l |λk − λl| < 2π , and by Magnus
condition on eigenvalues� does exist.

5. Application to the BCH formula

The so-called BCH formula allows us to obtain (as an infinite series) the logarithm of the
product of two noncommuting exponentials: log(exp(X) exp(Y )) ≡ W =∑∞k=1Wk (see, for
instance, [3]). Since the BCH formula can be easily extracted from ME, equation (13) above
gives a condition either for the existence ofW or for BCH series convergence in terms of
‖X‖, ‖Y‖.

SupposeA(t) in equation (1) is given by

A(t) =
{
X t ∈ [0, 1]

Y t ∈ (1, 2].
(27)

Then the exact solution of (1) att = 2 reads

Z(2) = exp(Y ) exp(X). (28)

If, in turn, we look forZ(2) through ME, we haveW = �(2). Then the Magnus series,
equation (2), provides us with a representation of the BCH series in terms of nested commutators

exp(Y ) exp(X) = exp

[ ∞∑
k=1

�k(2)

]
. (29)

It is unnecessary to say that this representation in terms of nested commutators is by
no means unique, due to the Jacobi identity. However, the interesting feature of this
expansion is that equation (13) furnishes now a sufficient condition onX, Y so as to ensure
existence/convergence, namely

‖X‖ + ‖Y‖ 6 ξ. (30)

We note in passing that ME is sometimes referred to as the continuous analogue to BCH
expansion. If we think of equation (27) as a particular type of discontinuity inA(t) then ME
is certainly a kind of generalization of BCH formula for continuousA(t).

6. Conclusions

In [1] the existence of the exponential representation forZ(t) is taken for granted and the
study addresses the convergence of the expansion (2). Instead, here we do not make use of the
expansion (2) at any stage of the proof of (12). The analysis then addresses the existence of a
solutionZ(t) in an exponential form. We have proved a sufficient condition for the existence
of this representation in terms of the norm of the linear operatorA(t) defining the differential
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system. An additional and striking conclusion is that the domain of existence we find coincides
with the domain of convergence of the Magnus series found in [1].

In the process of estimating the domain of existence we have found that the treatment of
the basic commutator plays an important role. Obviously, the best possibility corresponds to
evaluating it in an exact form. Alternatively, we have introduced a parameterµwhich conveys
the effect of additional information on the algebra. The sequence of equations (21)–(23)
illustrates these facts. The lower bound whenµ = 1 is by far the poorest one, which is quite
natural. As far as we have some new information about the algebra involved we might increase
the lower bound and consequently enlarge the domain of existence. In this respect, we have
built up a basic way of carrying it out via the introduction of the parameterµ (see equation (7))
This feature is clearly seen from equations (22), (23) in the example in section 4.1 where the
existence domain is enlarged by replacingµ = 1 by µ = 1/

√
2. The situation improves

drastically when no bound at all is taken on commutators. This is the case corresponding to
equation (21). There the norm of commutators is exactly taken into account since the very
beginning, and therefore the bounding involved, is tighter than in previous procedures.

Given the limited number of results concerning the existence of� and the convergence
of
∑∞

k=1�k, the results presented in this paper can be of utility in the numerous applications
of ME, either as a perturbative tool or as a numerical integrator. An illustration of this is given
by the example of the convergence analysis of the BCH formula.
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